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Abstract—Particle defects on the cathodic copper plate surface 

always happen due to the immaturity of electrolytic copper 

processing. The removal of defects mainly depends on their 

height exceeding the plate and current removal requires manual 

measurement and operation, which is time-consuming and 

laborious. To automate the removal process, machine 

vision-based defect detection methods need to be developed. 

However, copper defects are of very small size, which increases 

the difficulty of feature extraction and prediction. Therefore, 

this paper proposes a novel Anchor-based Detection and Height 

Estimation (ADHE) framework, to locate the defect out and 

estimate the height of the defect in an end-to-end way. 

Large-scale raw images are transformed into several image 

blocks as input. Defect features are obtained by Defect Region 

Extraction Network and then sent into Height-RCNN for defect 

detection and height prediction. Dataset of cathodic copper 

plate surface defects has been collected from a real-world 

manufacturing factory. Experimental results show that the 

proposed ADHE method can effectively address the small size 

problem of copper defects and achieve excellent results in 

detection and height estimation. 

I. INTRODUCTION 

The production of the cathodic copper plate is important 
for the development of the whole society, especially for the 
manufacturing industry. Due to the problem in current 
electrolytic processing, when the cathode copper is 
precipitated, defects will come out on the surface of the 
copper plate as particles. Those copper particles beyond the 
national standard requirements (the height exceeding the 
copper plate) are considered unqualified surface defects. It’s 
necessary to detect these copper particles and remove them. 
However, due to the undeveloped and unintelligent 
production conditions in cathodic copper factories, detection 
and removal of surface defects rely heavily on human labor 
currently. It’s dangerous and time-consuming for human 
workers to be exposed to an industrial environment to remove 
defects of copper plates. Working for a long time also tends to 
make their estimation less accurate. Thus, to meet the 
requirements of intelligent manufacturing, automatic 
detection of surface defects on cathodic copper plates needs 
to be developed. 

Machine vision has been widely used in many quality 
inspections of various products because it is a non-contact 
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and harmless approach. The vision-based defect recognition 
is stated in [1] and the image-based surface defect detection is 
systematically studied in [2], where many pieces of research 
about image or vision-based methods for surface defect 
recognition and detection have been introduced. Defect 
detection in images of nanofibrous materials has been studied 
in [3], and an improved method based on convolutional 
autoencoders is proposed in [4]. A multiscale GAN [5] 
method is studied for fabric surface defect detection [6]. 
Recently, weighted double-low-rank decomposition is 
applied to fabric defect detection [7]. Multiple Hierarchical 
Features are fused in an end-to-end way for steel surface 
defect detection [8]. Pyramid feature fusion and global 
context attention network is proposed recently for surface 
defect detection [9]. These recent studies suggest that 
image-based methods for defect detection have shown 
effectiveness and efficiency. Inspired by these researches, a 
novel anchor-based framework is studied for detection and 
height estimation of particle defects on the surface of cathodic 
copper plate with captured images in this paper. 

 
Fig. 1 The example of the defective cathodic copper plate. These circled in 

red are defects and zoomed-in right, under the followings are the 

corresponding height of each copper defect. The unit of height is millimeter. 

 An example of defective cathodic copper plate is shown in 
Fig. 1. The Difficultly of this dataset is two-folded. On the one 
hand, it can be seen in Fig. 1 that the sizes of the defects are 
much smaller than the whole image, which makes it hard to 
accurately detect them. On the other hand, different from 
normal defect datasets, defect particles on copper plates are 
labeled with not only locations and categories, but also their 
heights, as shown in Fig. 1. So object detection methods like 
Faster RCNN [10] cannot be directly applied to this data., 
while conventional image processing algorithms are based on 
hand-designed features, which is time-consuming and needs 
much expert experience [1]. 

To address the two problems in an end-to-end manner, a 
novel Anchor-based Detection and Height Estimation (ADHE) 
framework is proposed for cathodic copper plate surface 
defects. The main novelty and contribution in this article are 
listed as follows: 

1) A novel anchor-based framework is proposed for small 
particle defect detection on the large cathodic copper plate 
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surface. Especially, a Height-RCNN network is designed to 
conduct detection and height estimation simultaneously in an 
end-to-end manner. 

2) A dataset of cathodic copper plate surface defects has 
been collected from a real-world industrial factory. And the 
extensive experiments on the dataset are conducted in this 
paper to show the effectiveness of the proposed ADHE 
method. 

The remaining of this article is organized as follows. The 
related work about surface defect detection and anchor-based 
object detection is stated in Section II. The proposed ADHE 
method is introduced in Section III. The experiments are 
extensively conducted and analyzed in Section IV. Finally, 
conclusions and future researches are discussed in Section V. 

II. RELATED WORK 

A. Surface Defect Detection  

Surface defect detection is a significant stage before 
products leave the factory or the current station. And many 
pieces of research on surface defect recognition and detection 
have been studied [2], [11], [12]. Object detection-based 
methods are widely applied for surface defect detection, and 
the proposed method in this paper can be categorized into this 
branch. 

Image pyramid convolution neural network based on 
Mask R-CNN [13] has been proposed to detect surface defects 
[14], which combines image pyramid and deep convolutional 
neural network to extract pyramid features and performs well 
on the inspection of the oil leak defect on the freight train. In 
the recent proposed DefectNet [15], a shared weight binary 
classification network is applied to determine whether an 
image contains the defects, and then the detection network is 
used for detection. The DefectNet shows a good detection 
speed and effect for surface defect detection. A decoupled 
two-stage object detection model is proposed for surface 
defect detection of flexible printed circuit boards [16], in 
which a multi-hierarchical aggregation module is used for a 
location feature enhancement module in the defect 
localization and a locally non-local module is further used to 
enhance the defect classification, achieving an accurate 
surface defect detection. To address the surface defect 
detection of the printed circuit board, an extended feature 
pyramid network model is proposed to accurately locate and 
identify small defects and shows well performance [17]. 

Many excellent pieces of research on surface defect 
detection of various objects have been reported recently, while 
an end-to-end height estimation of defects is still required in 
the work of this paper. 

B. Anchor-based Objection Detection 

 Object detection has attracted a lot of attention these years 
[18]. And anchor-based objection detection is widely applied 
in various object detection scenarios due to its outstanding 
detection precision. 

The classical Fast Region-based Convolutional Network 
(Fast R-CNN) is proposed for object detection in an 
anchor-based approach with two stages [19]. Faster R-CNN 
[10] based on Fast R-CNN is then improved with an 
end-to-end trained Region Proposal Network (RPN) for object 
detection, achieving a faster detection speed. One-stage 
anchor-based SSD model [20] spreads out anchor boxes on 
multi-scale layers to directly predict anchor box offsets and 
object categories. Recently, RetinaNet [21] is further proposed 
for dense object detection with focal loss, which is trained in a 
one-stage way and achieves high detection accuracy and 
detection speed.  

Anchor-based objection detection methods have shown 
high detection accuracy. Therefore, the proposed ADHE 
method in this paper also follows the main framework and 
re-design RCNN module for extra height estimation of defects 

III. PROPOSED ADHE METHOD  

In this paper, an Anchor-based Defect Detection and 
Height Estimate network (ADHE) is proposed which consists 
of Image Block, Defect Region Extraction, and Height-RCNN 
(H-RCNN) three modules. Firstly, large-scale raw images are 
cropped into several input blocks without overlapping. Then 
input blocks are sent into the defect region extraction network, 
which follows a two-stage network structure used in [10] as an 
overall framework, including feature extraction network, 
Region Proposals Network (RPN), and Region of Interest 
(ROI) pooling. A feature extraction network is designed to 
learn abstract representations from input blocks and generate 
feature maps of different scales. And then RPN network is 
applied to produce candidate proposal regions that are likely to 
contain defects with pre-defined anchor boxes. ROI layer is 
applied to pool candidate proposal regions into fixed-size 
vectors with fixed dimensions. Finally, the Height-RCNN 

 
Fig. 2 The framework of the proposed ADHE method. 

 



  

module, which is an RCNN model with an extra height 
predictor branch, takes fix-size vectors as input and conducts 
defect classification, location, and height estimation tasks 
simultaneously. The framework of the proposed ADHE is 
presented in Fig. 2. All the modules are trained in an 
end-to-end approach. 

A. Image Block 

As shown in Fig. 1, defects on the surface of the cathodic 
copper plate are much smaller than on the whole plate. The 
dramatic contrast in size between the foreground defect 
object and background plate makes it easier for the network to 
neglect defect features, causing a lower recall rate. 
Large-scale images cannot be directly fed into detection 
networks due to hardware limitations, so an image block 
operation is firstly adopted to mitigate these issues. Raw 
images are cropped into n×m blocks, n stands for the number 

of blocks by row and m stands for the number of blocks by 
column, and all these blocks share no overlapping areas 
between each other. This operation does not increase any 
parameters and adjusts the receptive field for the detection of 
small defects. In Fig. 3, a 2×2 block operation is shown. More, 

the operation can increase the number of the training set and 
is conducive to obtain a better detector. In the section on 
experiments, the improved performance of image blocking 
can be figured out. 

 

 
Fig. 3 Image blocking used in this paper. 

B. Defect Region Extract Network 

To accurately locate the defects and compute defect features 
in image blocks, an anchor-based method is adopted like in 
[10], including feature extraction network, RPN network, and 
ROI Pooling.  

First of all, a feature extraction network consisting of a 
backbone and neck network is used to get multi-scale feature 
maps, which contains high-resolution feature maps for small 
features and low resolution but more abstract semantic 
feature map for large features. ResNet with Feature Pyramid 
Network (FPN) is a common combination. But for defects on 
cathodic copper plates, HRNet [22] is a better choice for 
defects of small size. After feature extraction, a region 
proposals network is applied to generate candidate proposals. 
The label of anchors is assigned like as in [10], a positive 
label is that the anchor with the highest 
inter-section-over-union (IoU) overlaps with a ground-truth 
box, or an anchor that has an IoU overlap higher than 0.3 with 
any ground-truth box. And the training loss of RPN LRPN  is 
defined as follows. 

 LRPN =
1

𝑁𝑐𝑙𝑠
∑𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
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1
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∑𝑝𝑖
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∗)

𝑖
 ⑴ 

Where Lcls is cross-entropy loss over two classes (defect or 
background), and pi

* denotes the true label of the anchor; Lreg 
is smooth-L1 loss over position regression, ti

* denotes the 

transformed coordinates of the bounding box of ground-truth, 
Ncls, Nreg respectively denote the normalized term of 
classification, regression. And 

1  is the weighted term. 
Candidate Proposals, together with feature maps gained 

from the feature extraction network are then sent into the ROI 
pooling layer to extract fixed-size feature vectors for the 
following Height-RCNN model. 

C. Height RCNN 

The classical RCNN model in [10] takes fixed-size feature 
vectors from the ROI layer as inputs and generates class 
labels and object locations as output. However, for particle 
defects on cathodic copper plates, not only class and location, 
but also the height of defects need to be predicted. Based on 
this, a Height RCNN(H-RCNN) model is proposed. As 
shown in Fig. 2, H-RCNN consists of a shared Fully 
Connected (FC) layer and three separate branches. Feature 
vectors processed by ROI layers are input into shared FC 
layers for channel-wise reduction. A box classifier branch is 
used to classify whether the region is a defect, a box regressor 
branch is responsible for outputting the defect location, and a 
height predictor branch is proposed to estimate the height of 
the defect to help defect removal in this paper 

The loss of the H-RCNN model is defined as follows: 

LH−RCNN =
1

𝑁𝑏𝑐𝑙𝑠
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LHeight =
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where ui
* denotes the true label of ground-truth, Lbcls is also 

log loss over two classes (defect or background), and Lbreg is 
also smooth-L1 loss over position regression. Nbcls, Nbreg 
respectively denote the normalized term of classification, 
regression. 2  and 3  are the weighted terms; Lheight is also 
smooth-L1 loss [19] over height estimation. Hheight denotes 
the normalized term of height estimation.  

All the parameters of the whole ADHE model are trained in 
an end-to-end way, and the total training loss is defined as 
follows: 

L = LRPN + LH−RCNN (4) 

At the end of the training, the ADHE model can be applied 

for testing. 

IV. EXPERIMENT RESULTS AND DISCUSSION 

In this section, the cathodic copper plates defect dataset is 
introduced, on which the experiment is conducted and 
analyzed. And the influence of the backbone network, image 
block numbers, and parameter 

3 is respectively studied. 

A. Experimental Details and Settings 

Cathodic Copper Plates Defect Dataset (CCPD) consists of 
160 images collected from the real-world industrial copper 
manufacturing factory. And, the defects on each image are 
labeled with class, coordinates of the bounding box, and 
height, as shown in Fig. 1. The resolution of each image is 
2516×2428 while the size of defects varies from 147.45 to 

6911.71. And the height of defects varies from 2 to 300, as 
shown in Fig. 5. There are 333 ground-truth bounding boxes 
in total. The training set and testing set are randomly divided 
into 7:3. 



  

The code of the ADHE method is implemented with 
PyTorch1.10 and MMDetection toolbox [23]. All the 
experiments are performed on NVIDIA RTX 3090 GPU 
(with 24G memory) under CUDA11.1 on Ubuntu 16.04 
system. The size of the input image is 800×800. All the 

backbone networks used in experiments are pre-trained on the 
ImageNet classification task. And The default setting of the 
backbone network is HRNet-w40 [22]. For fine-tuning on 
copper defect dataset, the batch size is set as 4, the number of 
total training epochs is set as 20, and the learning rate is set as 
0.02 with a decay of 0.0001. Others follow default settings in 
the MMDetection toolbox. For loss functions, the settings of 
parameters 

1 2,  follow the ones in [10]. The default setting 

of the parameter 
3 is 0.1. And the default setting of the 

image block is 3×3.  

Evaluation metric: The effect of detection is evaluated by 
Average Precision (AP), a comprehensive metric used in 
object detection. AP calculates areas under the P-R curve, 
which means both Precision and Recall are evaluated. Since 
height estimation can be viewed as regression generally, Root 
Mean Squared Error (RMSE) is used to evaluate the effect of 
height predictor in H-RCNN, which calculates differences 
between ground truth height values and predicted ones.  

The aforesaid metrics are defined as follows. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (5) 

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (6) 

AP = ∫ 𝑃(𝑅)𝑑𝑅
1

0

 (7) 

RMSE = √∑
(�̂�𝑖 − 𝑦𝑖)

2

𝑛

𝑛

𝑖=1
 (8) 

where TP and FN represent the number of copper defect areas 
that are correctly detected or not, and FP represents the 
number of background areas that are misclassified as defect. 
ˆ

iy  stands for ground-truth value for the height of defects and 

iy  is predicted one. 
 Since there are three parts to the ADHE framework, each of 
them contributes to detection and height estimation tasks 
differently. The following 3 sections study the influence of 
the feature extraction network, image block number, and 
hyperparameter λ3 separately. 

B. The influence of Feature Extraction Network 

In this section, the effect of the feature extraction network is 
discussed. A feature extraction network is vital for learning 
from small defect objects. In this experiment, 4 different 
networks, including  ResNet50, ResNet101 [24], HRNet-w32, 
and HRNet-w40 four are studied and compared. 

TABLE I.  THE EXPERIMENTS OF ADHE WITH DIFFERENT FEATURE 

EXTRACTION NETWORK ON CCPD DATASE 

Backbone Params P↑ R↑ AP50↑ RMSE↓ 

ResNet-50 26.63M 0.372 1.000 0.949 9.135 

ResNet-101 45.62M 0.383 1.000 0.955 9.640 

HRNet-w32 32.38M 0.379 1.000 0.951 10.016 

HRNet-w40 48.63M 0.393 1.000 0.956 8.572 

“↑” means higher results are better and “↓” means lower results are better 

TABLE I. lists AP50, Precision, Recall, RMSE results as 
well as parameter counts of 4 networks. According to AP50 

  
Fig. 5 Information collected from Cathodic Copper Plates Defect Dataset 
(CCPD). (a) distribution of height labels; (b) distribution of area for 

bounding boxes 
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Fig. 4 Feature Map from ADHE feature extraction network with 4 different backbones (a)ResNet-50 (b)ResNet-101 (c)HRNet-w32 (d)HRNet-w40 

 



  

results, the detection performance gets better when models 
get bigger and ADHE with HRNet-w40 achieves the highest 
average precision value. It shows that the HRNet-w40 
backbone is in favor of detecting defects of small size. And 
based on the well-learned features from the HRNet-w40 
backbone, the height estimation also can be well achieved. So, 
HRNet-w40 also achieves the best result on the height 
estimation task, which is 1.444 lower than HRNet-w32,1.086 
lower than ResNet-101, and 0.563 lower than ResNet-50.  

Fig. 4 shows features maps of the ADHE method with 4 
different backbones listed in TABLE I. Although cropped, 
the size of the images is still much bigger than the defects. As 
shown in Fig. 4, feature maps from ADHE methods can 
capture the information of defects roughly. Compared 
between 4 backbones, HRNet-based methods in Fig. 4(c)(d) 
is generally better than ResNet-based methods in Fig. 4(a)(b). 
HRNet-based methods locate the position of defects more 
accurately and less active to useless backgrounds. Moreover, 
HRNet-w40 learns abundant information not only from 
defect regions but also from surrounding areas in Fig. 4(d), 
while HRNet-w32 in Fig. 4(c) only focuses on little areas of 
the defect region. This difference between HRNet-w40 and 
HRNet-w32 makes their performance gap on the RMSE 
metric. 

C. The Influence of Image Block Numbers 

The operation of image blocking helps detection of defects 
of small size and carries no additional parameters. The 
smaller size of image blocks, the better the ADHE method 
can locate defects. In this paper, the influence of numbers of 
image blocks has been studied and the results are shown in 
TABLE III. . Default feature extraction network is 
HRNet-w40. 

As shown in TABLE II. , raw images are cropped into 3 

different patches. It can be seen that when using the same 

feature extraction network, the detection and height 

estimation results increase as the block number adds. And 

3x3 of image blocking achieves the best detection result on 

AP50 and height estimation result on RMSE. 

TABLE II.  THE INFLUENCE OF DIFFERENT RATES OF IMAGE BLOCKING 

ON DEFECT DETECTION AND HEIGHT ESTIMATION. 

Block P↑ R↑ AP50↑  RMSE↓ 

1x1 0.438  0.767  0.715  13.127  

2x2 0.392  0.971  0.927  12.314  

3x3 0.393  1.000  0.956  8.572  

Since ADHE3x3 method with HRNet-w40 backbone 

achieves the best results on AP50 and Height RMSE metric, 

some examples of defect height estimation visualizations of 

defect detection are given in TABLE III. and Fig. 6 

separately.  

TABLE III.  THE HEIGHT ESTIMATION OF DEFECTS OUTPUTTED BY THE 

PROPOSED ADDE METHOD. (/MM) 

No. 1 2 3 4 5 6 

Ground Truth 26.00  19.00  18.00  38.00  72.00  82.00  

Estimation 29.94  23.69  19.60  37.68  72.36  84.67  

No. 7 8 9 10 11 12 

Ground Truth 50.00  22.00  27.00 39.00 65.00 21.00 

Estimation 52.69  27.21  28.47 37.55 64.71 18.98 

12 height estimation results from ADDE3x3 with their 

ground truth values are listed in TABLE III. It shows that the 

height estimator in the ADDE method also achieves good 

results which are close to ground truth height. 

More, some visualization results of defect location are 

shown in TABLE III. Ground truth bounding boxes are 

painted in green as a whole area while predicted bounding 

boxes are drawn as red boxes. As shown in Fig. 6proposed 

ADHE can achieve a good detection performance while 

taking an extra defect height estimation task. All the ground 

truth defects shown in Fig. 6 have been found, even including 

those defects which can be neglected. 

D. The Influence of Hyperparameter
3  

The parameter 3  is the weighted term to balance the 

training loss and adjust the weight of loss 
HeightL . In this paper, 

the influence of parameter 3  on defect detection and height 

estimation is also experimentally studied and analyzed. The 

smaller the parameter 3 , the less contribution of the loss 

HeightL  is given during training. But the larger the parameter 3 , 

  

  

  

  
Fig. 6 The visualizations of defect detection results on real-world 
cathodic copper plates with the proposed ADHE method. The backbone 

of ADHE is HRNet-w40 and rate of image blocking is 3x3. 



  

it can affect the training of the detection. Thus, making a 

balance during training is much important for the proposed 

ADHE method. 
As shown in TABLE IV. , the value of the parameter 

3  is 
set from 0.05 to 5.00 to study the influence. According to 
AP50 and RMSE results, the value of 0.5 of the parameter 

3  
achieves the best performance on defect detection while the 
value of 0.1 height estimation. Since the best result on defect 
detection and height estimation cannot be achieved at the 
same time, a trade-off needs to be taken into consideration. 
The default setting of the parameter 

3  is 0.1 because it also 
balances the training of both tasks and obtains a relatively 
better performance. 

TABLE IV.  THE INFLUENCE OF PARAMETER 
3 ON DEFECT DETECTION 

AND HEIGHT ESTIMATION. 

3
 

P↑ R↑ AP50↑ RMSE↓ 

0.05 0.395  1.000  0.944  9.134  

0.10 0.393  1.000  0.956  8.572  

0.50 0.350  1.000  0.962  9.610  

1.00 0.244  1.000  0.960  10.593  

5.00 0.037  0.547  0.314  40.079  

V. CONCLUSION AND FUTURE WORK 

In this paper, a novel Anchor-based Detection and Height 
Estimation (ADHE) framework is proposed to detect particle 
defects on cathodic copper plate surfaces. The proposed 
method utilizes Image Block operation to crop large-scale 
raw images into several image blocks. As to small size defects, 
a defect region network and Height-RCNN network are 
deployed to conduct feature extraction and detection task. 
Especially, the proposed ADHE method can locate the defect 
out and estimates the height of the defect in an end-to-end 
way. The experiments on the cathodic copper plate defect 
dataset show the effectivity of the proposed ADHE method.  

Though the operation of image blocking can help achieve 
better performance, the rate of image blocking requires 
human setting. It is significant to develop an adaptive image 
blocking method for defect detection and height estimation. 
And it shows different background and light illumination 
from images of cathodic copper plates, thus, one of the 
research directions is to develop a domain adaptation ADHE 
method. Additionally, the automatic equipment for defect 
removal of the cathodic copper plate should be further 
researched to help validate the proposed ADHE method on 
more real-world images. 
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